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Life Distribution Properties of Devices

Subject to a Levy Wear Process

by

M. Abdel-Hameed

K ABSTRACT

Assume that a device is subject to wear. Over time the wear is

assumed to be an increasing Levy process?-V . Suppose the device has

a threshold Y with right-tail probability G. Let C be the

failure time of the device andCF x  be its survival probability given

that X = x. It is shown that life distribution properties of G
AL0

are inherited as corresponding properties of F for each x -t -

Opcimal replacement policies for such devices are discussed for suitably

chosen cost functions when the failure rate of C is bounded and

continuous a.e. on the support of G
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1. INTRODUCTION.

Let (,F,P) be a probability space. On it, X = (X t) is an

increasing, right continuous, pure jump process with independent

incredments, X 0 = 0. Every such X has the form (see ITO(1967))

X = E (X -x )t t s -s!Ct

and for every Borel set B c [O,o)x(O,o')

N(B) = E 1B (s,X s-x s)

has the Poisson distribution with some mean n(B); it follows then

that N(B1),...,N(B ) are independent whenever BI,...,B are1n '"'n

disjoint. We assume that the mean measure n has the form

n(ds,dy) = A(ds)v(dy) , s>0, y> O.

Then, V is necessarily a Levy measure, that is, u satisfies

fli(dy) (yAl) C ,

which in turn implies that p(CE,o))K for every e > 0

and A is an arbitrary measure on (0,-) with 0 !5 A[0,t] < for

every t Finally, we assume that the function t A(t) : A[O,t]

is continuous (necessarily increasing and has A(O) = 0).

Since n is assumed to have the product form A xi , it is

possible to do a deterministic time change to cause X to have

stationary and independent increments. Let T be the right
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continuous functional inverse of A , i.e.,

(u) = inf {t:A(t) > u) , uER

and set

XX -- X uERu T(u) ' +

Then, X is an increasing pure jump process with stationary and

independent increments, a L~vy process. If N is defined for

X as N was for X , then N is a Poisson random measure with

mean measure n(ds,dy) - dsp(dy).

For x in R+ the probability measure Px is determined by

PX{X tEA ,i=l,...,n} = P{X EA i-x,i=l,...,n)

and

P X{Xo=x} = 1.

Let (Q',F',P') be another probability space and Y be a

nonnegative random variable defined on it. For each x in R+

define

pX = P?( 1Y>x)

The measure PK on - x 11' is defined as the product measure

= x Px Ex(F) denotes the expectation w.r.t.PX( (x) and E 3 E° .

We Inkerpret X as the amount of deterioration, or wear,
t

suffered by the device during [0,t] ,and Y as the threshold
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strength of the device, so that

inf {t: X Y)
u

is the failure time of the device. Define, G(x) = P'(Y>x) and

A - {x: (x) # 0). Note that if

inf 1u: X 2 Y)

then

C A(;) and C - t(C) almost surely. It follows that

(t) = 'x{ > t) = Ix{y>xtx t

Moreover,

x" Wt - (A(t))
I K

where

x (u) x > ux

fe"FG(kU)J/d(x) ,xeA

(1.2) 0 , xiA

is the survival probability corresponding to C

In Section II we show that life distribution properties of the

threshold Y are inherited as corresponding properties of the failure
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time r, under appropriate conditions on the function A(t).

In Section III we determine the form of the optimal replacement

policies for such devices for properly chosen cost functions.

Throughout, the word "increasing" will be used to mean'hon-

decreasing'and "decreasing" will mean "nonincreasing".

TI. PRESERVATION OF LIFE DISTRIBUTIONS.

Assume that a device is subject to wear occuring according to

the increasing, right continuous, pure jump process with independent

increments described in Section 1. The device has a certain

threshold Y defined on (h',F',P'). The device fails once the

wear exceeds or equals to the threshold. Let C be the right tail

probability of the threshold Y and A = {x: G(x) # 0. T1-en

for any x in R+ the survival probability of the device is defined

by equation (1.I).

In this section we prove that life '4strihution properties

of the threshold right tail probability G are inherited as corresponding

properties of the survival probability F under suitable conditionsx

on the function A.

2.1. DEFINITION. Let x c R and be the failure time with

survival probability F . Define U {t: F (t) ' O}. Then
x x x

.--
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F is said to have:x

(i) increasing (decreasing) failure rate if i7(c > t + sIC > t)

is nonincreasing (nondecreasing) in t e Ux  for each s c R+:

(ii) increasing (decreasing) failure rate average if

ixf() < (_) [N fa('Wo)]l/a for each 0 < a < 1 and each nondecreasing

function f: R - R+ .

(iii) new better (worse) than used if ix[f(0)] _(_) ix[f(c - s)Ik > s]

for each nondecreasing function f: R - R+ and each s E R+ .

A detailed investigation of these classes is given in Barlow and

Proschan [ 2] .

The following shows that life distribution properties of the

function G inherited as.corresponding .properties of the survival

probability F given by (1.1), under appropriate conditions on thex

function A.

Z.2. THEOREM. Let F be given by (1.1) . Assume the L4vy measure Wx

is finite. Then the following hold:

(i) If G has an increasing failure rate and A is convex and

< < Leb with a density f that is P61ya frequency function of

order two (PF2) , then Fx(t) has increasing failure rate.

(ii) If G has a decreasing failure rate and A is concave, then

F has a decreasing failure rate for each x t R

(iii) If G has increasing failure rate average and A is starshaped,

then Fx has increasing failure rate average for eaeh x e R
x R+

(iv) If G has decreasing failure rate average and A is antistarshaped

and U < < Leb with PF2 density, then f(t) has decreasing failure rate

average.



( I f G is. new better thL&- used anc is s ;Terad-litivf. tl-e'>

for each (0,1) and x, t, s :-R we havc

F(t-1s) F(t) F (s) . in particular F is new better than. %:ed.
x (1LX C

(vi) If G is new worse than used anid .'is subadditive, then for

each x c R+ , F xis new worse than used.

.3-REMARK. By an argument similar to the one used in the proof of

Trheorem (3.1) of Abdel-Hameed and1 Pr,)schan A. , it suff ices to provi. tl,,

properties of ) t(-rtns of those, of Vanm) -, and tnen draw thca

conclu'- on for tlhV non-stat ionarv case 1,v using t-e rulat ion

F = F ..

PROOF OF ThEOREMl 2.2 W1. Let N(t) be the number of jumps of X

during (O,t]1 and -(k) is the k th convolution of li, then

F x(t)= Ex [i 0() 1Gx

where for each k 0, V = f -(+Yl () R 1"

GX~~i (yR R\O

Since F x(t) E EG( t )/G(x) , then it suffices to show that

K (t) =Ex d(X ) has increasing failure rate. Since f is a Polya

frequency of order two, then it follows by an argument similar to

the one used in proving Theorem 4.9 of Esary, Marshall and Proschan

E 6 ] that f k(x) is TI'2  in k and x . Since G has increasing

failure rate implies that C x Y) = C .(x+y) enjoys the same property

for each x , then the result follows from Theorem 5.4 of Karlin [10 ]

page 130.

PROOF OF (ii). It suffices to show that RK has decreasing

failure rate. It is evident that RK is differentiable

and has decreasing failure rate if and only if the function

f: [o,-) [0,1] given by f x t) K x(t)/K Ct) is nondecreasing

:1in t CR+ for each x c R



This is true if and only if for each z e ROD x c R+ such that

x + z c A,

D(tt 2) i K~ (t I k x t 2 -i K+ (t I) T (t2

is non positive for t < t 2 , t I , t 2 E Ux By the "Basic Composition

Formula" (Karlin [10] , page 17) we have that
e~I ,k I ) P(t I ,k) ji (kl1)Gd(x+z) w (kl)-d(x)

D(tl t 2) W EE 
k )j x z W k

kI - 2 P(t2 ,kI) P(t2 ,k2) I(k2)G(x+z) (k2 )6(x)l

where P(t,k) is the Poisson kernel which is totally positive of

all orders. Therefore for each k1 , k2  in the domain of the sum

the first determinant is nonnegative and we only need tc show that

for such kI and k2  the second determinant in the sum is nonpositive.

This is true if for each k 2! 0, the function o(k,x) = v (k)Gx)

(k)-
has decreasing failure rate. But pi G(x) is a mixture of

(x)def-G(x+y) with respect to (k) and decreasing failure rate
y

property is preserved under mixtures.

PROOF OF (iii). Since F Ct) = EX(X t)/G(x) , and since E-(x)] -l/t

is decreasing in t -> 0 , then it suffices to show that EXE(x )

has increasing failure rate average. Tt suffices to show that

Sx(t) has increasing failure rate average. Since K (t) = E C(Xt+ x)

and the function G (y) = G(x+y) has increasing failure rate average

when G does, then the result is immediate from Theorem 5.2 of

Esary, Marshall and Proschan [6].

PROOF OF (iv). It suffices to show that K0(t) has decreasing

failure rate average. Since G has decreasing failure rate average

if and only if G(x) - e- Ax  changes sign at most once and if once

in the order +,- . Since the density f is PF2, then the

t _ __ _



compound Poisson kernel £(t,x) - E P(t,k) f (k)(x) is totally
k ?

positive of order two and therefore

K (t) - e- (A)t E C-(Xt) - e t]

changes sign at most once and if once in the order - , + , by

"The Variation Diminishing Property", Karlin [10 ], page 21.

Note that the average of the failure rate is Less than or equal to

r

JR u(dy) = lm 0(0). The function is increasing dno 1)(0) = 0.
0

Therefore, K0  has decreasing failure rate average.

PROOF OF (v). It suffices to show that K (t) enjoys the desired

property. Now write,

K (t+s) = E[G()t+s ]x s

= EC(Xt+ S + X)]

[by definitioa of xl

E[G(Xt+ s - X + ax + X + (1-a)x) 7

E[G(X - x)G(X + (1-)x)]
t+s s 5

= EEG(Xt + ax)]E E?(X + (1-a)x)]

[by the stationarity and independence

of the increments]

= E a ( t IE(1 - t)x o( s S

ax(t) K( -C)x(S)
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PROOF OF (vi). By an argument similar to the one used in proving

(v) and reversing the direction of the inequalities, an operation

justified since G is new worse than used instead of being new

better than used we get for each t, s c R+ and a E (0,1)

YK.(t+s) t K= (t) K (s)
(1-C)x

> K (t) K (a)

[since K decreases in x ]x

Therefore K is new worse than used for each x c R
x +

The following Tleorem is the key theorem in this section.

2.4. THEOREM. The results of Theorem 2.2 hold for infinite Levy

measures.

PROOF. We only prove (i), the other cases follow similarly.

First write for n EN N{0}

in- ,)y N(dsdy)
[o,t]X C.,®)

Observe that the Ldvy measure associated with Xn is of the form,

n n n
v (dt,dy) - A(dt) uI (dy) where v (dy) = P(dy)I 1 (y).

(n '

Since j is a L~vy measure, then u(- , ®)< for each n and
n

thus Vn is a finite measure.

I ........ ....



For n in N \fO}, let X",1  u ,
+ 4, ~u

By Vheurem 3.2 it foilow., that 1(n(t = _ef l : .l has 'ncrearsiiig
x t

failure rate. Ne oniv n,' to show that 'I (t) - K ', ]( x t ejCysxt

the same property. Now let, D = {x: G(x) is dise,ntinuousl.

Note that X n increases to X almost everywhert, as n goes tot t

infinity. Let ((x) = 1 1m Ax(y), then G (Xn) converges to

C(X ) almcst everv where for each t in I-. "v the bounded

convergence tec'zn wt, hav: that Fx , unverges tot

FX (f I for each t 0 . Since '. has countable number of

discontinuities then it f,Ilows from Theorem L.C of Kesten 7l11]

that x ( I ) :X, r ea-h t 0. 11-erufor,, E ' E = X K (t

Since limit of increasing failure rate survival functions is an

increasing failure rate survival function, the result follows.

The following theorem is a partial result, when " depends on

x and t

.5 TFOREM. I.et F be given by (1.1). Assume that G dependsx

nn x and t . Then the following holds:

(i) Suppose that the map x IC(x,t) has increasing failure rate average

for each t, R+, the map t -,(x,t) is decreasing for each x t R+

and :. is starshaped. Then F has increasing failure rate averagex

for each x t. R+ '

(it) Suppose that the map x -+(x,t) has decreasing failure rate

and the map t -G(x,t) is increasing for each xf R+ , Let , be

antistarshaped and p < < Leb with PF2 density. Then F0  has

decreasing failure rate average.

• " .. ...w. .. "
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(iii) Suppose that the map (x,t) -G(x,t) satisfies the property

G(+y, t+s) < G(x,t) G(y,s) for each x, y, t, s E R+. Let ,. he

superadditive. Then, for each x,t,scR+ and L t (0,1), we have

F (t+s) ! p at) F (s). In particular F is new better than

used.

(iv) Suppose that the map (x,t) - G(x,t) satisfies the property

G(x+y, t+s) Z G(x,t) G(y,s) for each x, y, t, s c R+. Let A be

subadditive. Then F is new worse than used.
X

PROOF OF (i). Define (t) = EtX[(X )] . It is sufficient

to show that for each A E R+ : Hx(t) - e changes sign

at most once and if once in the order + , -

Fix X and let t' be the point where such a change occurrs.

Define, Hx(t) = EX G(X ,t') . By Theorems 2 .2 and 2.4 it follows that

HxCt) - e t  changes gign once and In the order +, Thus,

t -Xt
it't) e for t S t' and H'(t) < e for t t' Since
x x

t - G(x,t) is decreasing in t for each x e R+, then

Hx(t) - R'(t) for t !: t' while H Ct) < H'(t) for t 2! t'
xx x

Therefore, T(t) eAt for t 5 t' and Hx t e-t for t t',

i.e. Rx (t) - e changes sign once and from + to -

PROOF OF (ii). It is necessary and sufficient to show that for each

X E R+, (t) - e changes sign at most once and if once in the

order -, + . Fix A and let t' be the point where such a change

occurrs. Define, K--(t) - E G(Xt,t'). By virtue of Theorems 2.2

and 2.4 it follows that Ki(t) - e"At changes in the order -,

Thus, K(t) S e for t 5 t' and K'(t) Z e- At  for t z t'.

Since t 4 G(x,t) is increasing in t for each x c R+, then

K (t) !5 K(t) for t 5 t' and K (t) Z KO~t) for t z to.

Therefore Ko(t)I e A t  for t S t' and K0 (t) k e-At for t Z t.

Hene*, Ko(t) 0 M -At changes sign once In the order -,+

. ... .. . . ... , , , ' . . . ,l



-12-

PROOF OF (iii). We need to show that Hx(t+s) ! (,x(t)iT_)x(s).

Observe that T (t+s) = Ex[(xA(t+s),t+s)]

SE[7G(XA(t)+A(s)+ x, t+s)]

= ER-G(X A(t)+A(s )- X A(s)+ ax + X (s)+(l-a)x, t+s)]

ECG(X A(t)+A(s)- XA(s)+ ax, t)T(XA(s)+(l-00x,s)'

EE-G(X +cx,t)] E [- (x +(1-a)xs)]
Act) A(s)

[By the stationarity and independence of

the increments]

= EX[I(Xt) E xA(s)]S

ax F ( ( l a )x ~s

PROOF OF (iv). The proof of (iv) is similar to the proof of (iii),

and hence is omitted.

Ill. OPTIMAL REPLACEMENT POLICY.

In this section we deal with the problem of finding the optimal

replacement policy that minimizes the average cost per unit time for

devices subject to the type of wear processes described in Section 1.

Define
zt. {xt t <c

+- d

and
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3t <

t , t

Note that

Zt = A(t)

and

Z t Z r( tR+zt = z(t) ' c+.

The process Z is obtained by killing the wear process X at the failure

time of the device and sending it to "iternity". The process Z is

obtained from X similarly. For tcR+ let Ft = o(Z , s!t) and
s

t 5s

Devices subject to the wear process Z are replaced at or after

failure at a constant cost c. Replacements before failure depends on

the accumulated wear at time of replacement and is denoted by c(.).

Naturally we assume that the cost of replacement before failure does

not exceed the cost of replacement at or after failure. We will deal

only with Markovian replacement times with respect to the history

(F). By a Markovian replacement time we simply mean a stopping time

with respect to the cononical history (F ).t

For each Markovian replacement time T the average cost per unit

time is of the form

T x 1IEc(Z T)I(T<C)] + CVX(TZ )1/Z'(T)

For each x in R+ let cl(x) - c - c(x) , xcA and equals to zero for

x in the complement of A with respect to Note that

*1 _____ ________-Jaw _



-14-

I (x) = {•X[(Z )1*c}X )

We will give sufficient conditions on the cost function c that

guarantees that the optimal replacement policy that minimizes the

expected cost per unit time is a control policy. Since T(x)EO for

each T for which iX(r) - +-, we will only concern ourselves with

those MarkovIan replacement times for which E ( )<- , xcR +. Denote

the class of such replacement times by U.

3.1 REMARK. Let U be the class of Markovian stopping times, T

with respect to the history (F t) such that EX(,)<-, , xcR+ . Note

that T belongs to U if and only if A(T) belongs to U.

The following proposition gives sufficient condition for the

finiteness of the expected failure time.

3.2. PROPOSITION. Assume that the map x -*(x,t) has increasing

failure rate average for each t ER+, and the map t 'G(xt) is

decreasing for each x R + and A is starshaped. Then ix(w) is

+
finite for all x ER+

PROOF. From Theorem 2.5 we know that F (t) P x( > t) has increasing
x

failure rate average. Therefore there exists X and to c R+ such
-- 0 -t -Xt

that F (t) > e for t < t and F (t t e for t > tx x

Therefore, ( o

0

J t

F tt+ e dt

- - _ _ __ _ _ __<

- ~ .-- 4



-15-

Let bS(A) be the class of bounded Borei measurable functions

whose domain is A. Every function in this class is extended toR+

by defining it to be equal to zero outside A. We denote the class of

such functions by 0* For the stationary process Z we define the

semigroup Qton 0 by Qtf(x) = ) for x in A and Qtf(x) 0

for x outside A. From the definition of x it follows that

Qt f(x) = EX[f(x t)(X t)]/G(X0 ) for x in A and equals to

zero for x outside A.

For functions in . 0 the infinitsimal generator

Cr -

li. , where thc' linit it uii r. i: .

, et L(C : 'f eyists ]e , !(C:) is calle t ,
0

dlomain of tho generator.

For an. unction f c B we define h:R R - R by
0 + +

h(x,y) = C; (x)[f(x + V)C(X + y) - f(x)C(x)],

ond note that sup h(x,y)1 ' 21lfIQ. Define the operator

x,y

1:b ,(A) - S(A; by

Tf(x) = (x,y),:(dy).

R0

Note that T is not necessarily bounded, since v is not

necessarily finite. However, if T is differentiable on A and the failure

rate is bounded, then T is bounded on the set of function fJ such

that f' c f, . To see this observe that adding and subtracting

[f(x)j(x + y)]/G(x) to the definition of h and using Lagrange's

Theorem we have that

- .--..
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hx,,) =[.v(x)][-G'( + ,.,f(.) -f'(, + .)]

-(+ ") + e1 y)~Ii(x) - f'(x + ?Y)ELG(x + v)/(x)11.

It follows that for each f c with I'E we have that,0

for each y t R+

supIh(x,y)I - Y if'Ii + ffl r].
x

= V M,

where r is the supremum of the failure rate and M = [ Ilf'!! + 'If r].

For such functions we therefore have that

liTfi= i11 h(x,v)i(dy)fl
JR 0  

-

0
[a

< {Y ((I) + 2 ;If l (dy)

0 a

<

The last inequality is true since for Levy measure - we have ti;t

(''A l)v(d) < which is true if and only if y;. (dT,' ,
I-' (I

;;(dv) < . Thus, for a > 1, y1j(dy) = yu(dv) + y,"dv.!.Jo Jo-.

'i rla 
rm

< i y',(dy) + a! '2(dv) < ,; and ! (dv) . This gives uF the
10 "a

inequality.

ft- -.. -.
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The following theorem II lustrates the fact that if G is

differentiable with bounded continuous failure rate, on its support,

then {f t , :fB b.c.t, D(G) and Gf = TI.
a a

3.3. THEOREM. Assume that T is differentiable with bounded almost

everywhere continuous failure rate on its support. Then,

def

H = {f E b :f' F b.c. G c (G)

and

Gf = Tf.

PROOF. Con.;ider for f E H

Tffl = !{ h(x,y)[! Qt(dY) - li(dy)]f•
t JRO t

1

Let Q (dy) = " YQ (dy). By an argument similar to the one used in
t t t

proving Theorem 1, page 302 of Feller [8], it follows that C;1/n [),a)}

is bounded for any a R+ and nQ 1/n{[ao,-)} < c for all n for

some a 0 R . By Helly's Theorem there exists a sequence (n k ) such

-I

that as t runs through it, the measures C (dy) converges weaklyt

to some measure 0 over finite intervals. Therefore, to see that the

limiting measure fZ equals yu observe that for each X > 0,

______
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' .:: !,'I trans' or of i s of tic jr:i

-t i  (1 - e ,(dx-

-' (1 -h -. 1

.,bserve? that for each w,e
-  

---- --- y 1)

the right-hand side of the inequality is integralie with respect tc

by properties of the Levy measure. Thereforc, by tlhe LEBESC"E

DOMINATED CO.NVERCENCE THEOREM it follows that

d (I - e- )vidy) =  
e y.(dy)

d R0 
R()

which is the Laplace transform of y . Upon differentiating each

side of the Laplace transform formula above with respect to and

dividing through by t and taking limits as t approaches zero we

get

Oi e y 1- Qt(dy) = e yw(dy)

t- 1R e Q JR e0 R0

1
Since I vQ converges weakly over finite intervals and by the

uniqueness of the Laplace transform the limiting measure is s, = y;:.

- -1 -
Let u(x,y) = (x)[-G'(x + 0 1y)f(x) - f'(x + e 2 )G(x + Y)].

ra 1 ra1-aaThen, j h(x,y) Q(dY) = u(x,y)y 0u  Q(dY) the last term converges

i~u(x,y)y(dy) at each continuity point a of yi(dy). This

convergence Is uniform since u is continuous. Then, for any f c H

we have

- Tfl R (x,[ ) [ dY - dd)]
f Ro
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laF t ,. it e" ,.o ct r e u t ": , K r o v •

:L1 X ,V) K d; - (.) P jrt :r.£

tl

a~ a<.t varies over (n. T'ht secunc t t:r-- i' - s t ha v or T-~.

1 -I

2 t 2 f ~:e a~scvr ) T~

",-rd t Srm less than or equal t . ' fa-. , -2 ,;- t,,r; C :.

smal'11 nough by choot-inkg lar e vnoug>. TE'r& or c,, weCrIue

th<;a . - ---- s Tfoe () as t - C! thr rou, h - I Tne re uit t-:'n

f llows from Lemm a 3, page 297 of Feller8 . i

The proof of the following proposition is obvious and henc. is

omitted.

3.4. PROPOSITION. Let b = in and assume that h 0. Then the

following two problems are equivalent in the sense that they x.a, tlic

same solution:

(P minimi ze y over all T c U

d ef
(P) maximize = ,E (-,) + E (c I(Z) for all 0U

Finallt, we state and prove the key theorem in this section.

35. THEOREM. Let c p if c o 0 f' c b.c. . Suppose that

b + Gc pW crosses the x-axis at most once and if once then the

crossing is from above. Assume that E < for all x c R+.

Define

a inffx:b + Gc Wx 0).

Then*
T= - inft O:Z ) [a,-;])

t

- O

i e() coss the solutis to (otPnc and 'heonce toe (hP

isfomaov.Asuetht (¢ = o alx2 +

crossing
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PROOF. By Remark 3.1. it sutfices to prove tie result for the

stationary process Z. Let infit: Z t [a, j; arid note thatt

1 does not exceed r . By assumptions, it follows that

It is therefore clear that I is in U. From Theorem 2.11.2 of

Ito E91 it follows that for each T I'

6(x) ix (b + Gc 1 (Z ))dx + c(x)

for each xc R+. Since 1* belongs to U , then for each t cU we have

tha (x) (x) i L (I! + Gc 1( )(dZ - ( + C lc(Z ))ds i.

The right-hand side equals E[ (U u c (' drl

Sx[J (b + Gcl(Zs))dsl ]. The first term is positive by

definition of . The second term is also positive by definition of

I and since Z is increasing. This finishes the proof.

4.6. EXAMPLES. (a) Assume that

] if y< y'

C.(y) =
I if y y

Then, 1(X) I (x + y) - 1(x)) I [oyO_x)(y)ji(dy),

jR
o0

and the optimal replacement policy is a control policy if c(x) is

strictly convex.

(b) Assume that G(Y) :e-Y , 0 !5 y < yo, and zero

otherwise. Thus, A - (G,yo) and we have that

Gc1 (x) = JA (e-Ycl(x + y) - cl(x))1(dy), xEA,

and zero otherwise.
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dnd the opt imal. replacement pol icy i s eas~l i I ti c. a cont rc I

policy if c(x) is convex strictiy increasing. Since convex

increasinv functiins approaches infi~ity as x approaches int fhit,

a nd c (x) is bounded then A !!u,3t Le f inite.
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